Digital panel meters, temperatur- and mains controlling special purpose instruments for customer requirements

ZIEHL industrie - elektronik GmbH + Co , Daimlerstr.13 , D-74523 Schwäbisch Hall , Tel. +49 (0)791-504-0 , Fax -504-56

Operating manual TR 300 - Archive document -

1. Function

1.1 General

ZIEHL thermostats of the TR 300 series are electronic two-setpoint controllers for monitoring temperatures. The standard design of the temperature controllers model TR 310 is based on the closed-circuit current principle. The installed relays pick up with connected sensors and temperature within limits. The thermostat signals and switches when the set limit is exceeded.

Modern circuitry, reliable components such as function and routine test ensure high repeat accuracy and long service life.

TR 300 thermostats are built into a 24-pole plug-in housing:

- easy to operate and to install as directly wired to the plug base. The upper electronic part can easily be changed
- housing snapable on DIN-rail according to DIN EN 50 022 or mountable with M4 screws
- gold-coated contact springs and plugs ensure a perfect contact and a long service life.

1.2 Special Features of TR 300

Temperature controller for Pt 100 sensors according to DIN 43 760 / IEC 751

The TR 300 temperature controller monitors 3 Pt 100 sensors simultaneously.

When the limit of early warning or switching off is exceeded in one of the sensors the appropriate relay releases.

- 3 sensors, 2 adjustable limits, 2 relays
- LED display for operation ON, trouble in measuring circuit and switching state of the relays
- Two-lines connection. Line resistance up to 20 Ω can be compensated.
- At sensor break or sensor short-circuit as well as at disconnection of sensor line the relays switch off. Signalled by an LED.

1.3 Application

TR 300 thermostats and Pt 100 sensors are a reliable monitoring system. For verifications at electromotors and generators the temperature characteristics and the temperature limits are an important measurable value. Possible damages by excessive temperature at machinery and equipment are effectively avoided:

- Exact switching-points with high repeatability
- largely insensitive to interference on measuring line

1.4 Compensation of line resistance

- connect pins 16-21 and 14-20
- connect sensor 1 to pins 18 an 22, short-circuit sensor line at sensor side (close to the sensor)
- set limit 1 to 85 °C
- turn trimmer for compensating line 1 until relay 1 switches, sensor line 1 is compensated
- make the same procedure for sensors 2 and 3
- disconnect short-circuits at sensor side
- connect sensors properly

 $\begin{array}{lll} \text{date / name} & \text{05.04.2001} & \text{WL / Fz} \\ \text{sheet 1 of 5} & & & \\ \text{06.04.2001} & & & \\ \text{Subject to technical modifications.} \end{array}$

Z. Nr.: 930 0700.1 Type: TR 300 / S 24 EA - Nr.: 9911.3

2. Electrical Data

Power consumption < 8 VA Frequency 50 - 60 Hz ON period 100 %

Relay output 2 relays, co- contacts

Switching voltage max. AC 400 V Switching current max. 6 A Switching power max. 1100 VA

Rated operational current Ie = 2,5 A, 380 V, AC11

Test conditions VDE 0660 / VDE 0160

Isolation VDE 0110 / AC 380 V / I Group C

Transformer VDE 0550 Permissible ambient temp. $-20 \dots + 55$ °C

Housing design S - 24

Line connection 24 pole, 2 x 0,75 mm² ... 1,5 mm² per terminal

Housing protection class IP 31
Terminal protection class IP 20
Panel inclination any

Mounting snapable mounting onto DIN-rail 35 mm according

to DIN 50022 or screwable assembly M4

Sensor connection

Sensor 3 x Pt 100 according to DIN 43 760 / IEC 751

Sensor current $\leq 1 \text{ mA}$

Connection type standard = 2 lines

line resistance max. Ohms (adjustable)

Monitoring line/sensor short - circuit

line/sensor break

Switching points 2

Adjustment accuracy approx. 3 °C Repetitive error < 0,2 K

Switching state standard: closed-circuit current principle

true < set limit = relay on option: operating current true < set limit = relay off

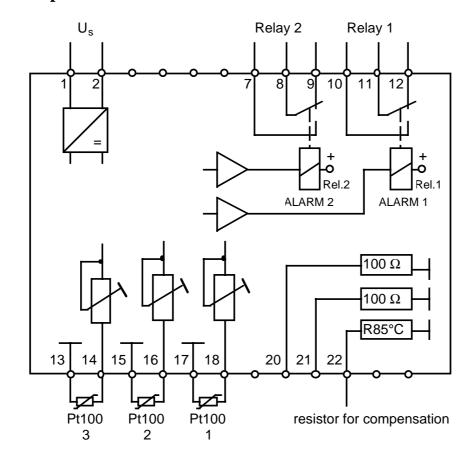
Hysteresis $\leq 2 \%$ of span

Weight approx. 750 gr

3. Installation - Commissioning

- 3.1 The plug base can be mounted either with
- 35 mm mounting rail according to DIN 50 002 or
- M4 screws
- 3.2 Wiring directly to plug base
- Connect wires as per wiring scheme
- Plug in electronics and fix with knurled screw

ATTENTION


Before switching on thermostat make sure that the operational voltage Uc of the lateral type plate and the mains voltage connected to the thermostat are the same.

- 3.3 Commission the thermostat as follows
- Connect Pt 100 sensors . Switch on mains voltage
- At correct state contacts 7 8 and 10 11 closed. (Relays picked up).
- Set limits with screwdriver to desired values, e.g. limit 1 for warning, limit 2 for switching off.
- Relays release when set temperature is exceeded, the relevant LED light's up.

If the thermostat does not switch check whether

- sensors are connected correctly
- sensor temperature is higher than limit

Connection plan

date / name 05.04.2001 WL / Fz sheet 3 of 5 06.04.2001 sa

 Fz
 Z. Nr.: 930 0700.1

 Type: TR 300 / S 24

 Subject to technical modifications.
 EA - Nr.: 9911.3

Characteristic Temperature - Resistance Diagram for measurement resistors with platinum coiling

ပ	0	10	20	30	40	20	09	20	80	06	ე。/Ծ
0	100,00	103,90	107,79	111,67	115,54	119,40	123,24	127,07	130,89	134,70	0,385
100	138,50	142,29	146,06	149,82	153,58	157,31	161,04	164,76	168,64	172,16	0,373
200	175,84	179,51	183,17	186,82	190,45	194,07	197,69	201,29	204,88	208,45	0,362
300	212,02	215,57	219,12	222,65	226,17	229,67	233,17	236,65	240,13	243,59	0,35
400	247,04	250,48	253,90	257,32	260,72	264,11	267,49	270,86	274,22	277,56	0,339
200	280,90	284,22	287,53	290,83	294,11	297,39	300,65	303,91	307,15	210,38	0,327
009	313,59	316,80	319,99	323,18	326,35	329,51	332,66	335,79	338,92	342,03	0,315
002	345,13	348,22	351,30	354,37	357,42	360,47	363,50	366,52	369,53	372,52	0,304
800	375,51	378,48	381,45	384,40	387,34	390,26					0,295

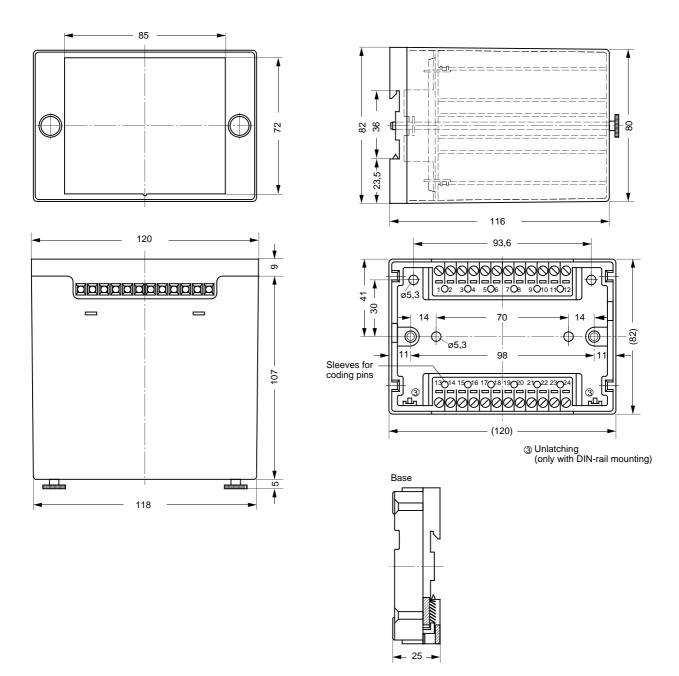
By a number of fixed point measurements the following interpolation function could be determined for the basic value series of measurement resistors with Pt coiling (DIN 43 760)

$$R_t = R_0 (\ 1 + At + Bt^2\) \qquad \qquad R_0 = \text{resistance at temperature 0 °C}$$

$$R_1 = \text{resistance at temperature t (°C)}$$

$$R_2 = 0.390802 *10^{-2} (\text{Grd})^{-1}$$

$$R_3 = 0.580195 *10^{-6} (\text{Grd})^{-2}$$


Thus any intermediate value can mathematically exactly be terminated, e.g.

t = 761,24 °C
R = 100 (1 + 761,24 * A + 5,794863 *
$$10^{5*}$$
 B) = 363,87 Ω = 100 (1 + 2,974941 - 0,336215)

Subject to technical modifications.

Z. Nr.: 930 0700.1 Type: TR 300 / S 24 EA - Nr.: 9911.3

Design S24

